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EDITORS’ INTRODUCTION 
Mike Askew & Margaret Brown 

 
This monograph is one in a series, each following a national seminar held as part of the BERA National 
Events Initiative. This initiative was launched by the BERA President, Professor Pam Lomax at the 
BERA Annual Conference at Queens University Belfast in August 1998, with the aim of reviewing 
findings from areas of British Educational Research which have significant implications for educational 
policy and practice.  

It was suggested that Numeracy would constitute a topic of particular relevance since the National 
Numeracy Strategy was due to be introduced in all English primary schools in the year from September 
1999 to August 2000. Related initiatives are also happening in other parts of the UK, in particular all are 
involved in Mathematics Year 2000, which is in turn part of a UNESCO world-wide initiative.  

 

The BERA National Event relating to Numeracy  

This took place on Saturday February 26th, 2000 at the School of Education at the University of Exeter. 
Although there is no BERA Special Interest Group (SIG) in mathematics education, a similar function is 
fulfilled by the British Society for Research in the Learning of mathematics (BSRLM) which is formally 
associated with BERA. BSRLM has been in existence for nearly 20 years and now works closely with 
BERA, for example by sponsoring symposia at the BERA Annual Conference. It was decided to organise 
the BERA National Event as an integral part of a BSRLM Day Conference; this would ensure a good 
attendance of key researchers in the field and streamline publicity. Also by fitting it into an already 
planned conference we were able to arrange it earlier than would otherwise have been possible, and close 
to the launch of the National Numeracy Strategy in September 1999. 

As organisers of the BERA event, and as a basis for this resulting research review to be published by 
BERA, we tried to identify some key aspects of research relating to numeracy which each had clear 
implications for policy and practice. We then approached an expert in each area to provide a brief (< 
1500 words) draft review of relevant UK research, outlining some key issues and findings, together with 
implications for practice. We were fortunate that every one of the people we approached agreed to 
undertake the task, in one case jointly with a colleague, and during the fortnight before the conference the 
papers steadily appeared on the BSRLM web-page.  

In the event the railway system did its best to sabotage the programme, with a queue of trains arriving in 
Exeter from different parts of the country, including London, stuck for over an hour a few miles out of 
the station while a fire was extinguished in the engine of the Manchester train. Nevertheless the 
programme went ahead with only a few changes of programme to accommodate the late arrivals. The 
event was well-attended by over 80 people, including researchers from Holland and Australia.  



 

 

 

4

Perhaps unsurprisingly, much of the discussion centred on recent government initiatives, including 
aspects of the National Numeracy Strategy, which were examined in the light of the research base. Some 
examples of controversial points from the papers in this review which caused debate were: 

• the effect of shifting the focus of early years teaching to abstract ordinal counting rather than cardinal 
strategies relating to sets of objects; 

• related to ordinal v. cardinal is the question of place-value or quantity value (e.g. at what stage should 
the 3 in 38 be identified as 3 tens rather than thirty?); 

• the need for standard as opposed to effective calculating algorithms; 

• the lack of convincing evidence that use of ICT is a positive factor in raising long-term standards; 

• the possible reasons for poor performance of some minority ethnic groups; 

• the fact that holistically based practices rooted in teachers’ beliefs and/or cultures seem to be more 
salient than technical factors in relation to effective pedagogies; 

• the effects of the reduction in the length of initial and inservice training. 

 

The Research Review 

As a result of the discussion of each paper which took place at the National Event and comments from 
the editors, the authors revised their papers, and it is these revised versions which are presented in this 
review. 

There are several limitations of the review which should be noted, and which are largely due to the need 
to keep it within manageable bounds. 

First, the review focuses on British research, and research from elsewhere is only included where it is 
essential to understanding the state of knowledge. 

Second, the review is confined to numeracy and not with the wider aims and topics which properly 
belong within mathematics. There is some discussion of the changes of interpretation of the word 
numeracy in the first paper, but briefly numeracy is taken here in the not unproblematic sense in which it 
is used in the National Numeracy Strategy, i.e. to include both basic understanding and skill with 
numbers and number operations in the abstract, and the solution of problems in a variety of everyday 
contexts. There is in fact very little recent British work on the ‘number sense’ aspects of understanding 
and using numbers, so that this is not included as a separate section.  

Third, the review focuses in the main on work encountered in nursery and primary schools, and is 
concerned largely with whole numbers and the four operations on these rather than with rational numbers 
like fractions and decimals, which are introduced in primary schools but also form a major part of the 
secondary number curriculum. 

Finally, other areas which have not been addressed are detailed studies of learning in classroom contexts, 
attitudes, standards of attainment and international comparisons.  
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In spite of these omissions there is much here which is relevant to numeracy as it is and could be taught 
in primary schools. Each author was asked to address specifically the implications for policy and 
practice, and for further research. 

In fact several reviewers expressed their surprise at how little exclusively British research there was, and 
how much we relied on the USA in particular for most of our education research in primary mathematics. 
This has implications for national priorities in educational research, in which numeracy has a much 
smaller research base than literacy.  

In terms of methodology, some reviewers pointed out that computer-based literature searches in this area 
were a surprisingly blunt tool; in the end there was no substitute for personal knowledge and sitting in a 
library trawling through piles of journals! 

But hopefully this review will be regarded as a first go rather than as an end-point. It needs extending 
into some areas which are noted above as not covered. It is clear nevertheless that we have begun to 
identify an agenda both for debate and for research in various aspects of numeracy.  
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NUMERACY POLICY  
Margaret Brown, King’s College, London 

 

Introduction 

When ‘numeracy’ first officially entered the English language as an important element of education in 
the Crowther Report on 16-18 Education (DES, 1959), it had a broad meaning of ‘scientific literacy’. 
However by 1976, ‘numeracy’ was understood to mean the ability to employ number skills and concepts 
in real-life contexts (Callaghan, 1987). More recently the National Numeracy Strategy (DfEE, 1998) has 
shifted the interpretation to emphasise competence at abstract number skills and relations, but to also 
broaden to include data handling and measurement, so that there is no longer, at least at primary level, 
any clear distinction between numeracy and mathematics (Noss, 1997).  

Meanwhile there is now a growing appreciation of the socio-cultural nature of numeracy practices in 
homes and workplaces which differ substantially from school-taught methods (Plunkett, 1979; Baker, 
1996; Noss, 1997). 

Justification cited for government action 

While McIntosh (1981) demonstrated that there has rarely been a time when there has not been criticism 
of numeracy standards in England, more recently government intervention stems from 1976, when a 
Prime Minister publicly expressed a growing concern among employers about the poor numeracy 
standards of school-leavers (Callaghan, 1987). However the Cockcroft Committee of Inquiry which was 
launched soon afterwards found little evidence of dissatisfaction (DES/WO, 1982). Concern has more 
recently arisen over comparative evidence of poorer standards of number performance in England than in 
competitor industrial countries (Prais & Wagner, 1985; Reynolds & Farrell, 1996; Keys et al., 1996; 
Harris et al., 1997; Basic Skills Agency, 1997; DfEE, 1999). Although it has been noted that there is no 
relation between GDP and numeracy levels (Robinson, 1999), nevertheless it appears that for the 
individual in England, innumeracy is a more significant handicap to employment than is illiteracy 
(Parsons & Bynner, 1999). 

Government interventions 1976-1995 

The setting up of the Cockcroft Inquiry was the start of the first recent Government attempt to improve 
national numeracy standards in England and Wales. The recommendations in the Cockcroft Report 
(DES/WO, 1982) included a ‘Foundation List’, setting a minimal utilitarian numeracy curriculum, and 
gave greater curricular emphasis to application to real-life contexts, practical work, calculators and 
realistic problem-solving. This was followed up at primary level by a national project Primary Initiatives 
in Mathematics Education (PRIME) which included development of a Calculator-Aware Number 
curriculum, stressing mental mathematics but replacing standard written methods by calculator use 
(Shuard et al., 1991). 

Government dissatisfaction with the direction of scarcely-implemented post-Cockcroft changes, together 
with evidence of unfavourable international comparisons, triggered the introduction of much greater 
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prescription. This took the form of a national curriculum containing detailed teaching objectives, and 
national testing with publication of school results. Ernest (1991), Ball (1990) and Brown (1996) describe 
the clash in philosophies of education and of numeracy/mathematics which troubled policy decisions in 
this period; these were in fact only recent manifestations of differences which had pertained over the 
previous 150 years (Brown, 1999). The implementation of the reforms were not always as intended, and 
two revisions of the national curriculum followed swiftly upon the original implementation (Johnson & 
Millett, 1996). 

The National Numeracy Strategy 

Finally as part of a ‘Back to Basics’ agenda and citing a further round of international comparisons, the 
Tory Government were pressurised by Ofsted (1997) to launch a National Numeracy Project in selected 
inner city areas, alongside a parallel literacy project. The incoming Labour Government continued the 
new emphasis on basic skills by appointing a Numeracy Task Force, following an earlier initiative on 
literacy.  

Since the National Numeracy Project had produced promising early results (Ofsted, 1998; Minnis et al., 
1999), this was adopted as the heart of a National Numeracy Strategy to be implemented in most primary 
schools in 1999/2000, after a large-scale national training programme (DfEE, 1998). The Strategy 
emphasises mental calculation and combines considerable further, technically non-statutory, prescription 
not only of the content and scheduling of teaching but also of pedagogy and lesson-structure.  

Although the Strategy claims to be research-based there are some doubts about the validity of the claim 
(Brown et al., 1998; Thompson, 2000). Certainly there are still some tensions between the more 
traditional aspects of the Strategy and the modernising tendency of the New Labour Government (Ball, 
1999; Brown et al., 2000). While the Strategy is not without criticism (Hughes, 1999), it has generally 
been well-received in schools (Merttens, 1999). 

Implications 

The literature suggests that although recent government initiatives have been generally well-intentioned 
responses to specific concerns, the pressures of time on policy have often led to detailed implementations 
which are not fully thought-through, and piloted either insufficiently or not at all. Hence they result in 
new unanticipated problems. Attempts either to correct old initiatives or launch new ones ensue, leading 
to initiative-fatigue and demoralisation of teachers. In several cases new initiatives have been launched 
before waiting for the results of development work. Impatience with implementation which is thought to 
be unfaithful to the original aims has led to increasing prescription of practice, without acknowledgement 
of the influence on practice of the beliefs, attitudes and knowledge of teachers.  

It is clear that other countries such as Japan are much more measured in their implementation of reforms, 
valuing more greatly the expertise and views of teachers, educators and researchers and taking more time 
to discuss, consult, pilot and evaluate, and produce supporting materials. 

While in the numeracy area there is a developing body of knowledge about policy development and 
implementation in the UK, this is still small in scope. More national research and dissemination of 
existing international work about effective reform and implementation are badly needed to inform future 
developments. 
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BRITISH RESEARCH ON THE DEVELOPMENT 
OF NUMERACY CONCEPTS 

Terezinha Nunes 

Institute of Education, University of London / Oxford Brookes University 

 

Introduction 

Research on children’s  conceptual development in mathematics was a rich domain in the UK in the late 
70s and early 80s. Much excellent work was carried out through large investigations, such as those 
incorporated in the Concepts in Secondary Mathematics and Science (CSMS) study and the Assessment 
of Performance Unit (APU), and also more detailed analyses of children’s behaviour and errors, 
exemplified by the investigations carried out in the Shell Centre for Mathematics Education. Bell, 
Costello and Kuchemann (1983) published an excellent review of this work, which can still offer 
significant insights to teachers for the design of assessments and lessons and the interpretation of 
children’s  difficulties. Although research on conceptual development has continued to flourish outside 
the UK, significantly less has been done here in the last decade. I propose here to point out some of the 
possible reasons for this decrease in productivity on conceptual development, review the contributions 
from the last decade, and consider their actual and potential impact on teaching as well as a possible 
agenda for the future. 

Contemporary interest in children’s understanding 

The surge of studies on children’s  conceptual development in mathematics education was undoubtedly 
connected to constructivism. Piaget’s early investigations concerning children’s reasoning about number, 
space and geometry, fractions, proportionality, functions, and probabilities, amongst others, provoked 
considerable interest in the difference between two types of knowledge in mathematics which later 
became known as ‘procedural’ and ‘conceptual’ knowledge (Anderson, 1983) or knowing how and 
knowing when to use computations. Researchers in mathematics education turned in the 1970s to the 
need to investigate children’s conceptual understanding, having become aware that much teaching and 
assessment in schools dealt mostly with procedural knowledge.  

The interest in understanding was strengthened even more by a variety of demonstrations that many 
procedures learned in the mathematics classroom were often not used outside the classroom to solve 
problems (Hart, 1981) , were subject to bugs in their implementation (Assessment of Performance Unit, 
1991; Hart, 1981), and often forgotten in adulthood (Cockcroft, 1982). Children’s misconceptions were 
described (Hart, 1981; Bell et al., 1983) and assessments developed to help teachers identify such 
misconceptions. The evidence seemed to point unambiguously in one direction: more research was 
needed to clarify the processes involved in promoting conceptual development so that teachers could 
become agents in this process.  
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However, studies about conceptual development have become more scarce since, in spite of the fact that 
many books written about mathematics for primary teachers continue to emphasise the role of 
understanding for children’s mathematics learning (Haylock & Cockburn, 1997; Thompson, 1997). Why 
should this be so? 

Amongst other reasons, there are at least two that can be traced through the literature. The first one seems 
to be a consequence of what I will propose is a misconception developed by many researchers in this 
domain. Research in the late 70s and early 80s documented in a variety of ways the impact of social and 
cultural situations as well as affective and emotional factors on children’s performance in logico-
mathematical tasks. It was shown, for example, that the social context of mathematics classrooms is such 
that children come to treat problem solving in the classroom as a matter of implementing computations 
rather than thinking: they will carry out computations even if the problem could not conceivably be 
solved through these (Brousseau, 1997; Greer, 1997). 

It was also shown that children’s performance in the classroom might be considerably worse than outside 
it (Nunes, Schliemann, & Carraher, 1993; De Abreu, 1994). This finding led to the questioning of 
whether children’s  errors were the result of mathematical misconceptions or actually the result of social 
misunderstandings. Some researchers seem to have concluded from studies such as these that cognitive 
factors do not matter for children’s mathematical performance: only socio-cultural and affective factors 
should be considered in the education of pre-school and primary schools children. These conclusions are 
not justified by the studies on which they are based. 

The second probable reason for the scarcity of research on conceptual development seems to be a 
consequence of the contributions of past research. In particular in the domain of additive reasoning, there 
seems to be an impression that we already know what needs to be known to promote children’s 
understanding, and now we can get on with the business of teaching them. The classification schemas 
used in research to characterise problems that can be used to assess progress in additive reasoning have 
become so incorporated in the teaching of primary teachers (Haylock & Cockburn, 1997; Thompson, 
1997) that some authors treat them as essential ‘mathematics for primary teachers’. (Actually the 
classification of situations that can be solved through addition and subtraction is not a topic in 
mathematics but in the development of children’s  understanding of addition and subtraction.) 
Unfortunately, although it is true that research on additive reasoning has contributed substantially to an 
understanding of how teachers can become agents in the process of development, it is also true that there 
are many gaps in the literature and that teachers per force will continue to do much teaching without the 
proper knowledge base. 

Contributions from the last decade: additive reasoning 

Research in the last decade has contributed to our understanding of several aspects of conceptual 
development in the primary years. 

First, researchers have investigated children’s understanding of properties of operations (sometimes 
referred to as principles or rules). With respect to development in the domain of additive reasoning, these 
investigations have shown that: 

• children’s understanding of commutativity of addition is a relatively early development but should 
not be taken for granted in the infant classroom (Bryant et al 1999; Cowan, Foster, & Al-Zubaidi, 
1993); it has also been shown that this understanding is related to the use of more efficient 
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computation strategies (Bryant et al 1999; Cowan et al., 1993) and that it varies across problem types 
(George, 1992); 

• children’s understanding of additive composition is necessary for understanding place-value 
representation and also cannot be taken for granted in the infant classroom (Nunes & Bryant, 1996); 
the likely developmental path for this conceptual knowledge has also been identified (Nunes & 
Bryant, 1996); 

• children’s understanding of the inverse relation between addition and subtraction and of 
decomposition are closely related but these two are not related to knowledge of number facts (Bryant 
et al, 1999); 

• there is evidence on the existence of implicit and explicit knowledge of properties of operations 
(Bryant et al 1999) but we do not know whether these two forms of knowledge can be used in the 
same way in the classroom or not; 

• there is evidence that 8-year olds have some implicit knowledge of negative numbers but perform 
significantly worse if they are asked to make this knowledge explicit before solving problems (Borba 
& Nunes, 2000); 

• it is possible to improve children’s performance on tasks requiring the use of decomposition by giving 
them the opportunity to practice it in a familiar context where the same total is often obtained through 
the combination of elements with different values i.e., through counting money (Wood et al., 1998). 

Children’s understanding of the properties of additive operations is likely to be related to the types of 
strategies that they use when calculating mentally but so far evidence is only available with respect to 
commutativity. However, it is urgent that we find out more about the connection between the conceptual 
knowledge of properties of operations and the development of mental calculation strategies as these have 
now become a more important topic for teaching in primary school. It seems currently to be assumed that 
the teaching of mental calculation promotes understanding but it is just as likely that calculating 
strategies  result from understanding. If the latter rather than the former hypothesis is correct, depending 
on how teaching is carried out, the teaching of mental calculation strategies may end up facing the same 
difficulties that were faced by the teaching of written calculation strategies. 

Contributions from the last decade: multiplicative reasoning 

The research on children’s  understanding of multiplicative reasoning has so far had less impact on 
teaching than the research on additive reasoning. Classifications of multiplicative reasoning problems do 
not have the same privileged treatment in the teaching of primary teachers, where the difficulties of 
multiplicative reasoning are often ignored. Research has identified the common misconception that 
multiplication makes bigger and division makes smaller and provided evidence that this misconception is 
likely to be connected to the concept of multiplication as repeated addition and division as repeated 
subtraction. Nevertheless, teachers continue to be encouraged to use these very ideas in teaching.  

Progress in the investigation of multiplicative reasoning includes the following: 

• children’s understanding of commutativity of multiplication is a later development than 
commutativity of addition and is also influenced by problem type (Nunes & Bryant, 1996); 

• children’s understanding of distributivity is also a late development (Nunes & Bryant, 1996); 
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• children in infant classes already show some basic knowledge of multiplication and division (Bryant, 
Morgado, & Nunes, 1992); Nunes et al., 1993) with the understanding of the inverse relation between 
the divisor and the quotient in division lagging behind the ability to solve sums with the support of 
manipulative materials (Bryant et al., 1992); 

• children are able to use their understanding of multiplication to solve division questions much earlier 
than they are able to think of using division strategies to solve multiplication problems (Nunes et al., 
1993); 

• children’s understanding of inverse relations when considering multiplicative relationships  appears 
much later than expected by some mathematics educators in the past little contextual variation in 
performance in multiplicative reasoning tasks has been found but significant effects of the 
mathematical terminology used were documented (Nunes et al., 1993). 

Potential impact of the research on conceptual development and a research agenda for the future 

As pointed out, research on the development of additive reasoning as assessed by children’s performance 
in problems of different types has become incorporated in textbooks for teaching primary teachers and 
may already have an impact on the design of lessons and assessments. What is not clear is to what extent 
teachers may be able to support children’s learning beyond providing them with a variety of problems 
and discussing variations in the solutions provided by children. Although there is some research on 
possible developmental mechanisms, this research so far has not been considered in teacher education 
texts.  

The research on children’s understanding of multiplicative reasoning and the properties of the four 
operations does not seem to have had a noticeable impact yet although its relevance to teaching is 
undeniable. The current focus on the teaching of mental calculation without considering how the moves 
made in mental calculation relate to the children’s understanding of the properties of operations is cause 
for concern. Recommendations to teach multiplication as repeated addition and division as repeated 
subtraction are also cause for concern. Research suggests that such teaching may be at the root of later 
misconceptions. Alternative models for teaching have been shown more effective in experimental studies 
(Clark & Nunes, 1998) but evidence is still limited and more research is urgently needed. 

In view of the present emphasis on mental calculation, research that examines the significance of co-
ordinating instruction on mental strategies with instruction on properties of operations is urgently needed. 
Considering the misconceptions shown by children about multiplication and division and negative 
numbers, further research on these domains is also necessary. 



 

 

 

14

References 

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge: Harvard University Press.   

Assessment of Performance Unit (1991). APU Mathematics Monitoring (phase 2). London: School 
Examination and Assessment Council.   

Bell, A. W.; Costello, J. & Kuchemann, D. (Eds.). (1983).  Research on Learning and Teaching. 
Windsor: NFER-Nelson. 

Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht, The Netherlands: 
Kluwer.   

Bryant, P. E.; Morgado, L. & Nunes, T. (1992). Children's understanding of multiplication. Proceedings 
of the Annual Conference of the Psychology of Mathematics Education, Tokio. 

Cockcroft, W. H. (1982). Mathematics Counts: Report of the Committee of Inquiry into the Teaching of 
Mathematics in Schools. London, UK: Her Majesty's Stationery Office.   

Cowan, R.; Foster, C. M. & Al-Zubaidi, A. S. (1993). Encouraging children to count. British Journal of 
Developmental Psychology, 11, 411-420. 

De Abreu, G. M. C. (1994) The Relationship between Home and School Mathematics in a Farming 
Community in Rural Brazil. Unpublished University of Cambridge PhD thesis. 

George, R. (1992) A Study of Children's Understanding of Commutativity of Addition. Unpublished 
University of London MSc thesis. 

Greer, B. (1997). Modelling reality in mathematics classrooms: the case of word problems. Learning and 
instruction, 7, 293-307. 

Hart, K. (Ed.) (1981).  Children's Understanding of Mathematics: 11-16. London: John Murray. 

Haylock, D. & Cockburn, A. (1997). Understanding Mathematics in the Lower Primary School. London: 
Paul Chapman.   

Nunes, T. & Bryant, P. (Eds.). (1996).  Children Doing Mathematics. Oxford: Blackwell. 

Nunes, T.; Schliemann, A. D. & Carraher, D. W. (1993). Street Mathematics and School Mathematics. 
Cambridge: Cambridge University Press.   

Thompson, I. (Ed.) (1997).  Teaching and Learning Early Number. Buckingham: Open University Press. 



 

 

 

15

BRITISH RESEARCH ON MENTAL AND 
WRITTEN CALCULATION METHODS FOR 

ADDITION AND SUBTRACTION 
Ian Thompson, University of Newcastle upon Tyne / National Numeracy Strategy 

 

Introduction 

Early research studies on mental calculation were quantitative in nature and often employed the technique 
of chronometric analysis. This involved taking measurements of the response times of young children 
involved in calculating simple sums and differences and then inferring the nature of the strategies used 
from these measurements. Given our increased knowledge of the wide range of calculation strategies 
used by children, the limitations of such an approach , are now evident (Threlfall et al., 1995). This more 
detailed understanding of mental calculation strategies has been gleaned from studies which are of a 
qualitative nature. The research methods involve asking children to execute a calculation in their head 
and then describe how they worked it out. The interviews are usually recorded on audio or video tape for 
later transcription. Despite the concerns expressed about issues of reliability and validity (Ruthven, 1998) 
this procedure is currently considered to be the most effective way of gaining access to the thought 
processes of children involved in mental calculation. 

Mental strategies 

Given the lack of a tradition of teaching mental calculation in Britain it is inevitable that research studies 
in this area initially focused on attempts to identify the actual methods that children use (Jones, 1975; 
Thompson, 1989; Aubrey, 1993). Various taxonomies have been developed for these methods, and there 
is general agreement that, for the operation of addition with numbers to 20 the following strategies 
represent increasing levels of sophistication: count all, count on from first number, count on from larger 
number, use known number facts and derive a number fact (Denvir & Brown, 1986; Gray, 1991; 
Suggate, 1995; Thompson, 1995).  

There is less agreement on a taxonomy for strategies involving the addition and subtraction of numbers 
from 20 to 100 (Jones, 1975; Aze, 1988; Harries, 1994; Gray, 1994; Moore, 1996; DfEE, 1999; QCA, 
1999; Thompson, 2000b). However, recent research argues for the following classification system: the 
partitioning or split method (47+36 as 40+30=70; 7+6=13; 70+13=83) and the sequencing or jump 
method (83-47 as 83-40=43; 43-7=36). A variation of partitioning is the mixed method (83-47 as 80-
40=40; 40+3=43; 43-7=36), and an extension of sequencing is compensation (47+36 as 50+36=86: 86-
3=83). A fifth strategy, complementary addition, is often used for solving difference problems. Using this 
procedure the difference between 83 and 47 would be calculated as: 47 to 50 (3); 50 to 80 (30); 80 to 83 
(3), and the three steps 3, 30 and 3 would be added together to give 36 (Thompson & Smith, 1999). 
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Counting and mental calculation 

There is substantial research evidence to suggest that counting should constitute the basis of the early 
years number curriculum (Thompson, 1994a; Aubrey, 1996; Maclellan, 1997). However, particularly in 
the case of lower attaining children, there is a worry that over-dependence on counting may lead to their 
not committing number facts to memory (Gray, 1993; Askew & Wiliam, 1995; Tacon et al., 1997). On 
the other hand, even some children who know many number facts and have developed a range of 
sophisticated calculation strategies combine these facts and strategies with counting techniques in order 
to derive unknown facts (Thompson, 1995). Children need to learn to compress counting procedures if 
they are to be in a position to make choices between strategies. Those who have succeeded in achieving 
this compression of counting procedures into known and derived facts will have developed a powerful 
tool for success in arithmetic (Gray, 1997).  

This idea of compression is related to a different concept. There are at least two interpretations of an 
arithmetical expression such as 5+4: one triggers the use of procedures whilst the other makes use of 
numerical concepts and relationships. The symbolism simultaneously represents a process to do or a 
concept to know, and this leads to the idea of a procept: a symbol which ambiguously represents both a 
process and a concept (Gray & Tall, 1994). The ability to use mathematical procepts offers greater 
flexibility to the learner who can choose to calculate either by using a procedure or by drawing on those 
relationships inherent in the concept. 

Imagery 

Researchers investigating the mental imagery associated with the processing of number combinations 
have used children's verbal and written descriptions as a means of accessing this imagery (Gray & Pitta, 
1996a; Gray & Pitta, 1997). The images described by lower attaining children suggest that they carry out 
procedures in the mind in just the same way as they would operate with tangible objects, whereas higher 
attaining children seem to focus on those abstractions that enable them to make choices. The dominant 
representations identified among the lower attaining children are associated with images which range 
from pictorial representations of a hand with fingers to iconic representations of tally lines, number tracks 
or number lines. Higher attaining children show evidence of an implicit appreciation of the information 
compressed into mathematical symbolism (Gray & Pitta, 1996b). 

In one study, the responses of children asked to describe ‘what was in their head’ when they calculated 
revealed the extent to which their mental representations were influenced by the physical representations 
(verbal, pictorial, written or concrete) used by their teachers (Bills, 1999). The language of a teacher’s 
representation and the procedure associated with it provide children with a metaphor for communicating 
their own methods of calculation (Bills, 2000). This raises important questions about the most 
appropriate representations to use when teaching. Should we continue the UK tradition of offering a wide 
range of models, or should we focus, as they do in the Netherlands, on a few well-researched and 
effective models such as the empty number line (Beishuizen, 1999)? 

Teaching mental strategies 

Left to their own devices some children appear able to develop sophisticated mental calculation strategies 
(Gray, 1991; Thompson, 1992; Aubrey, 1993; Foxman & Beishuizen, 1999). However, there is a 
consensus of opinion that most children need to be taught a range of mental methods (Aze, 1988; 
Sugarman, 1997; DfEE, 1999), and there is some evidence that these can be taught. For example, a group 
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of teachers identified the number facts that a group of low-attaining Year 3 children were confident with, 
and built on these to help them derive unknown number facts. These children out-performed a control 
group in post-intervention assessment: three times as many moved from a modelling strategy to the use of 
known or derived facts (Askew et al., 1997). In another study, reception and Year 1 children working 
with visual images based on Stern's structured number apparatus made more progress in developing 
relational mental calculation methods than did a control group following a conventional approach (Tacon 
et al., 1997). 

An alternative approach to teaching specific strategies is to teach for strategies (Sugarman, 1994). This 
involves teaching specific skills, developing recall of facts and building awareness of important aspects 
of the number system and number relationships. These factors then contribute to the construction by the 
child of mental strategies appropriate for a given problem situation. A different four-part model 
(Thompson, 1999b) adds attitudes to the essential facts, skills, and understandings that need to be 
developed for the successful deployment of mental strategies. Children may have all manner of facts, 
skills and understandings at their disposal, but if they do not have the confidence to ‘have a go’ or take 
risks they are unlikely to use these facts and skills to generate an appropriate strategy. 

The empty number line, developed in the Netherlands for supporting mental calculation, has been 
recommended in several official publications (DfEE, 1999; QCA, 1998; QCA, 1999). However, only one 
research study in England has been reported (Rousham, 1997) and even though there was some initial 
success, most children reverted to formal methods within two months. The empty number line would 
appear to be a powerful tool for supporting mental calculation, but it needs a careful introduction and 
structured development: it cannot just be introduced sporadically to supplement work using a different 
model (Beishuizen, 1999). 

Close scrutiny of the mental calculation strategies used by children for the four basic operations suggests 
that there is no evidence of what is normally understood by place value in their methods (Ruthven, 1998; 
Thompson, 1999a; Thompson, 2000a). Mental calculation strategies utilise what has been described as 
the quantity value aspect of place value (56 seen as 50 and 6), whereas standard written calculations 
necessitate an understanding of the column value aspect (56 seen as 5 tens and 6 units) (Thompson, 
1999c). This subtle, but important, difference has implications for teaching. Since it is now recommended 
that formal written algorithms are not taught until Year 4, it would seem to make sense to delay the 
teaching of the notoriously difficult aspect of place value that focuses on a digit's column value 
(Thompson, 2000c; Anghileri, 2000). 

Written methods for addition and subtraction 

There are many articles on the teaching of written algorithms, but the majority appear to be based on 
'reflection' rather than on 'research'. A seminal article by Plunkett (1979) argued that, 

whereas mental algorithms are fleeting, iconic, holistic and not often generalisable, standard written 
algorithms, on the other hand, are symbolic, automatic, contracted, efficient, analytic and 
generalisable.  

British research in the area of written calculation focuses on very young children's invention of 
idiosyncratic symbols and their attitude towards standard symbols (Hughes, 1986; Munn, 1994; Gifford, 
1997); on older children's invented written algorithms (Thompson, 1994b); or on the identification of 
errors made in carrying out the standard algorithms (Ward, 1979; Brown, 1981; APU, 1980). 
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Using an ingenious game involving the annotating of tins to show how many bricks they contained 
Hughes (1986) found that young children (including some pre-schoolers) were able to represent small 
quantities, and that their representations were either pictographic or iconic, based on one-one 
correspondence. However, Munn (1994, 1997) found that those children who used their own 
idiosyncratic notation in the 'tins game' were not as successful as those who used conventional numerals 
when it came to deciding which tin had had an extra brick added.  

Hughes' (1986) work with young children and bricks also showed that, despite the fact that some of them 
were at school and had been using the conventional addition and subtraction symbols in their exercise 
books, not a single child used them in response to the researcher's request to represent on paper the 
process of physically adding two bricks to a pile of three. The implication would appear to be that the 
children did not feel that these symbols were particularly relevant to the problems they had been asked to 
solve. Thompson (1994b, 1997) found a parallel reluctance to use standard written methods in his 
research with 117 Year 5 children involved in the Calculator Aware Number (CAN) Curriculum Project. 
Seventy-one percent  of the children set out all of their calculations horizontally, with 14% using a 
mixture of vertical and horizontal layouts, and 85% consistently worked from left to right, with a further 
4% inclined to vary the direction in which they worked. This horizontal, left to right approach is 
diametrically opposed to the vertical, right to left procedure needed for the standard algorithms.  

Implications for practice, policy and research 

Thompson and Smith's (1999) research on mental calculation with numbers from 20 to 100 has 
implications for the balance in the emphasis that should be given to the various mental strategies for two-
digit addition and subtraction outlined in the National Numeracy Strategy's Framework for Teaching 
Mathematics (1999) (see also Thompson, 2000b). The Framework also describes a clear teaching 
progression for calculation, starting from mental methods, passing through jottings, informal written 
methods, formal algorithms using expanded notation, and culminating in the learning of standard 
algorithms. Research is urgently needed to ascertain the extent to which this seemingly logical 
progression is pedagogically sound. Current research would suggest that this path is not quite so clear 
cut. 

The plethora of research on errors or 'bugs', mainly of American provenance, needs to be extended to 
cover the types of error made during mental calculation and in the various stages of the teaching 
progression described above. We also need to know whether the introduction of the Empty Number Line 
- in a manner very different from that advocated in the Netherlands - is proving successful. In fact, the 
introduction of the National Numeracy Strategy has generated a wealth of research topics for 
investigation, particularly in the under-researched area of mental, informal and expanded written methods 
of calculation. 
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 BRITISH RESEARCH ON MENTAL AND 
WRITTEN CALCULATION METHODS FOR 

MULTIPLICATION AND DIVISION 
Julia Anghileri, Homerton College, University of Cambridge 

 

Introduction 

Much of the research on multiplication and division has related to analyses of the structure of the 
operations, and to children’s  performances in relation to different problem types. Difficulties have been 
identified with understanding (Nunes and Bryant, 1996, Anghileri, 2000b) and with the traditional 
algorithms, particularly for division (Anghileri, 2000a). The largest and most extensive study remains the 
Concepts in Secondary Mathematics and Science (CSMS) project where whole numbers computations 
and extensions to fractions and decimals were considered (Hart, 1981). Conclusions from this project 
note that even at secondary age, many children are still only ‘groping towards ideas of multiplication and 
division’ (Hart, 1981). Children’s learning of multiplication and division presents an ongoing concern. A 
recent national survey reports ‘too many difficulties with multiplication and division’ (Ofsted, 2000: 6). 
Tests for years 3, 4 and 5, in a national sample of 300 schools, intended ‘to pinpoint strengths and 
weaknesses in children’s  mathematical skills’ after the introduction of the National Numeracy Strategy 
identify calculations using multiplication and division, both mental and written, as key weaknesses 
particularly in year 3 and year 5. 

Categories of Problem 

Different problem types have been found to influence children’s mental and written strategies. 
Multiplication is identified with: 

• repeated sets (e.g. 3 tables, each with 4 children); 

• multiplicative comparison (scale factor) (e.g. 3 times as many boys as girls); 

• rectangular arrays (e.g. 3 rows of 4 children); 

• Cartesian product (e.g. the number of different possibilities for girl-boy pairs from 3 girls and 4 boys). 

For each multiplication problem there are two division problems related to the same number triple with 
the either the number of groups, or the number in each group missing. These two distinct types of 
division are: 

• measurement/grouping (quotition) (e.g. 12 children at tables of 4, how many tables?); 

• sharing (partition) (e.g. 12 children at 4 tables, how many at each?) (Brown, 1981; Anghileri, 1989; 
Bell et al, 1989; Greer, 1992): 



 

 

 

24

Each type of multiplication and division may be related to a different contextual problem and this 
structure will influence the difficulty of a problem as well as the size and types of numbers involved. 
Although repeated addition and sharing appear to be widely understood by primary aged children, and 
used in informal problem solving strategies, multiplicative reasoning is more complex (Nunes and 
Bryant, 1996) and difficulties with understanding multiplication and division persist beyond primary 
school (Hart, 1981). 

Relating meanings to calculation strategies 

Children as young as 5 years old show some understanding of equal grouping but have difficulty with 
other multiplicative ideas (Anghileri, 1989; Nunes and Bryant, 1996). Bryant (1997) found that children 
aged 5-7 have very little idea about the divisor/quotient relationship even though they share perfectly 
well. These early ideas, relating multiplication to ‘repeated addition’ and division to ‘sharing’, have an 
enduring effect and limit later interpretations. Misconceptions such as ‘multiplication makes bigger’ and 
‘division makes smaller’, and that ‘division is always division of the larger number by the smaller 
number’ cause difficulties, particularly when non integer numbers are introduced (Hart, 1981; Bell et al 
1984; Greer, 1988). Even with whole numbers, older children persist with very primitive methods like 
tallying and use of repeated addition and repeated subtraction to calculate with large numbers (Hart, 
1981: Anghileri, 1999b). Gray and Tall (1994) suggest that the introduction of multiplication and 
division can present a ‘proceptual divide’ between those who can and cannot integrate these new ideas 
within their existing understanding. 

Language and the commutative rule 

Language is an important factor as different phrases will influence greatly the solution strategy. 
Interpreting 52 x 3 as ‘52 times 3’ or ‘52 lots of 3’ may lead to a less efficient calculation than ‘52 
multiplied by 3’ or ‘3 fifty twos’ (Anghileri, 1991, 1995). Where a problem is set in context the structure 
of equal groups within the problems can be influential in determining what number is to be repeatedly 
added. Nunes, Schliemann and Carraher. (1993) showed that 9- and 10-year old school children did not 
easily accept the commutative rule for multiplication when they tried to solve context problems, such as 
calculating ‘14 lots of 3 dollars’. Specific teaching plays an important role in the developing the ability to 
use commutativity in solving multiplication problems (Nunes and Bryant, 1996). Division does not obey 
the commutative rule although many children will attempt to use it when they meet a problem such as 4 ÷ 
8 (Newstead, 1996; Anghileri, 1998). Children need help to interpret formal mathematical phrases 
identifying meanings with appropriate solution strategies (Anghileri, 1995; 1996; 2000b; Newstead, 
1996).  

Relating mental and written methods 

Effective mental approaches can involve partitioning numbers in ways that are different from the ‘tens’ 
and ‘units’ partition associated with place value. In a study of 9 to 11 year olds (n = 54) informal 
solutions for the problems 96 ÷ 4 and 96 ÷ 6 involved ‘chunking’ the 96 into 80 and 16, or 60 and 36, 
rather that 9 tens and 6 units, or even 90 and 6 (Anghileri, 2000a). Alternative written methods to the 
traditional algorithms are possible that use partitioning based on counting rather than place value 
(Beishuizen and Anghileri, 1998; Anghileri, 2000b). Distinction is made between place value in a holistic 
sense and a focus on the digits, for example calculating 1256 ÷ 6 is not the same as calculating 1000 ÷ 6, 
200 ÷ 6, 50 ÷ 6 and 6 ÷ 6 (Anghileri, 1999a). 
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Questioning the role of traditional algorithms 

Reservations about the need for standard algorithms, in a society that depends on technology for all 
important calculations, have been expressed by mathematics educators for many years (Plunkett, 1979; 
Noss, 1997; Thompson, 1997; Anghileri, 1998). It is argued that teaching standardised procedures for 
calculating encourages ‘cognitive passivity’ and ‘suspended understanding’ as they do not correspond to 
the way people naturally think about numbers. Studies of workplace mathematics show that pencil and 
paper methods used by adults are rarely those traditionally taught (DES/WO, 1982) and workplace 
requirements differ from skills taught in school (Harris, 1991). Recent evidence (Noss, 1997) suggests 
that widespread use of computers requires a workforce with sophisticated understanding of the 
mathematical basis of models incorporated in software, rather than traditional computational skills which 
are more quickly and accurately performed by machines. The National Curriculum no longer requires 
standard written procedures for calculating but requires ‘efficient’ methods (DfEE, 1999, annexe p11) 
and choice of ‘appropriate way(s) to calculate’ (p70). 

Difficulties with the standard algorithms 

Research studies have identified difficulties with the standard algorithms which provide efficient written 
methods when they are understood but often lead to errors where they are incompatible with intuitive 
approaches (Anghileri, 1998, 1999a). When faced with large numbers, many children continue to use 
inefficient counting or tallying strategies (Anghileri, 1999b; Anghileri and Beishuizen, 1998).The 
algorithm is also used inappropriately, for example, in National  Test calculations such as 568.1 ÷ ? = 
24.7 which are designed to be done using a calculator (QCA, 1998). 

Children tend to use algorithms as ‘mechanical’ procedures. Where they do not understand the 
procedures, they are unable to reconstruct the processes involved. Ruthven and Chaplin (1998) refer to 
‘the improvisation of malgorithms’ to describe children’s  inappropriate adaptations of the procedures. In 
tests with year 5 children  (n = 276) success rate on the calculation 64 ÷ 16 was 54% with successful 
children  using the related facts that 64 ÷ 8 = 8 or that 16 + 16 = 32. Typical wrong attempts involved use 
of the algorithm first dividing by 10 and then by 6. Other attempted to use the algorithm resulted in the 
answer 61 r 2 obtained from 6 ÷ 1 = 6 and 4 ÷ 6 = 1 r 2 (Anghileri, 1999b). Remainders in division cause 
difficulties. In a study of 10 and 11 year olds (n = 54) only 11% were correct in calculating 34 ÷ 7, many 
unsuccessful answers being 5r1 (Anghileri, 1998).  

Difficulties also arise with zeros in calculations with multiplication by zero presenting difficulties (Hart, 
1981). A common error resulting from use of the division algorithm involves a missing zero in the 
answer (answering 28r12 rather than 208r12 in the solution to 1256 ÷ 6) (Anghileri, 2000a). Further 
research is needed to consider which written methods children can use with confidence and 
understanding. 

Comparing English and Dutch approaches to division 

A comparison of English (n = 275) and Dutch (n = 259) year 5 children  for ten division problems 
involving 1 and 2-digit divisors found better success rates and greater improvement over a 5 month 
period for the Dutch children. Overall success in January was 47% (Dutch) compared with 38% 
(English) while in June the results for the same problems were 68% (Dutch) and 44% (English) 
(Anghileri, 1999b). English children  used the algorithm inappropriately and with limited success. Of the 
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38% of the items attempted in January using the traditional algorithm, 18% were correct. In June, 49% of 
the items were attempted using the traditional algorithm with only half of these correct. 

Dutch teaching approaches based on counting strategies with efficiency gained through ‘chunking’ 
appear to build more effectively on children’s mental strategies than procedures based on place value 
(Anghileri, 2000a; Beishuizen and Anghileri, 1998). This procedure was equally appropriate for any size 
divisors. 

Extension to fractions and decimals 

Calculating with fractions and decimals will involve the association of meanings with the numbers and 
with the operations. Fractions cause considerable difficulty when formal calculating procedures are used 
and even at secondary level multiplication and division problems are ‘successfully completed by few’ 
(Hart 1981). Informal methods need to be encouraged in primary school with the recommendation that 
formal procedures for calculating with fractions are deferred until secondary school (Hart, 1987). 

Complexities arise with decimals and it is suggested that ‘50 per cent of children  ..by the time they leave 
school ... have a reasonable understanding ..whereas the lower 50 per cent still have considerable gaps’ 
(Hart, 1981: 64). Recommendations suggested that emphasis is shifted from routine techniques to a focus 
on understanding the principles of decimal representation and computation with the help of sensible 
calculator use. 

Implications for policy and practice 

With a wealth of evidence pointing to the difficulties children have in understanding and using formal 
written procedures for calculating, and the expectation that children  ‘use mental methods if the 
calculations are suitable’ (DfEE, 1999:69) there is a need to re-assess the primary school curriculum. 
Place value and rehearsed formal procedures are no longer central as flexibility is called for in matching 
appropriate strategies to particular problems (School Curriculum and Assessment Authority, 1997 ; 
Anghileri, 2000b). Children  are expected to interpret problems in a meaningful way, making connections 
between the conceptual and calculational aspects of mathematics. By focusing on the development of 
number sense through encouraging mental methods and informal written strategies, children  will 
develop confidence in their own approaches to problem solving and maintain an inclination and 
enthusiasm for mathematics.  
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BRITISH RESEARCH ON DEVELOPING 
NUMERACY WITH TECHNOLOGY 

Ken Ruthven, University of Cambridge 

 

Introduction 

Technology has radically changed the character of numeracy outside the school (Noss, 1997). In the 
workplace, numeracy is increasingly mediated by computerised systems; what characterises the numerate 
employee is the capacity to work effectively and critically as part of a human/machine system. Indeed, 
over 20 years ago, as calculators were colonising the workplace and taking tentative steps into schools, 
an inspector of schools proposed that basic numeracy should be redefined as ‘the ability to use a four-
function electronic calculator sensibly’ (Girling, 1977). A series of studies of workplace mathematics, 
initiated soon after, reported that ‘electronic calculators have dramatically reduced the use of traditional 
written methods for all kinds of calculations’ and that computerisation was increasingly leading to the 
‘incorporation of calculations into the programs’ (Fitzgerald, 1985). Findings of extensive use of 
informal mental strategies by both adults and children led to a suggestion that: ‘With mental methods… 
as the principal means for doing simple calculations… calculators… are the sensible tool for difficult 
calculations, the ideal complement to mental arithmetic’ (Plunkett, 1979).  

The calculator-aware number curriculum  

Against this background, the Calculator-Aware Number (CAN) project set out to develop an exploratory 
approach to the teaching of number; encouraging informal methods of mental calculation; renouncing 
standard written methods of column arithmetic; and providing children with unrestricted access to 
calculators. Favourable findings were reported when the performance of the first cohort of project 
children on a National Foundation for Educational Research (NFER) mathematics test was compared 
with that of peers in other schools (Shuard et al., 1991). For the second cohort, it seems that the margins 
in favour of CAN children were smaller (Foxman, 1996).  

A more recent study analysed the progress of a cohort of children through neighbouring primary schools, 
including some previously involved in the CAN project (Ruthven et al., 1997). While children in the 
post-CAN schools performed no differently on average from their peers in KS1 mathematics testing, 
more were found at each extreme of the attainment distribution. At KS2, such differences did not persist, 
but another contrast was found. Children in the post-CAN schools were more liable to compute mentally, 
and to adopt powerful mental strategies (Ruthven, 1998). 

Calculator and computer use under the National Curriculum 

Although the ‘calculator-aware’ approach influenced the guidance accompanying the original national 
curriculum, little account was taken of its ramifications in developing curriculum orders and test designs, 
and the tone of official pronouncements became increasingly ‘calculator-beware’ (Ruthven, 2000). 
Nevertheless, calculators were widely available to older children. National surveys found the proportion 
of schools reporting that children had access to calculators in most or all lessons as 18% at KS1, 48% at 
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KS2 and 75% at KS3 (Seaborne, 1996); being used most commonly for executing routine computations 
and checking answers, then for solving complex problems, and less widely for developing number 
concepts (Keys et al., 1997). 

A recent review noted that research in this area has focused predominantly on primary education (SCAA, 
1997). It concluded that actual use of calculators had remained modest at this level, and any influence 
correspondingly limited; and that, however tempting it might be to cast the calculator as scapegoat for 
disappointing pupil performance, the available evidence did not support this.  

Calculators touch directly on prized skills that have long been taken as fundamental components of 
schooled numeracy. But there has been no real redefinition to take account of the calculator; rather, its 
use tends still to be seen as a fallback strategy from an essentially unchanged personal numeracy, 
‘independent’ of technology. In effect, numeracy is conceived as the ‘residual’ capability of an individual 
when technology is withdrawn; rather than as the capacity of the human/machine system.  

Similarly, the computer has tended to be seen not as a tool capable of reshaping numerate thinking, but as 
a medium for developing a pre-technological numeracy. Not surprisingly, then, monitoring reports by the 
Department for Education and Employment (DfEE) (based on questionnaire surveys of information 
technology use in schools) and by the Office for Standards in Education (OFSTED) (summarising 
inspection evidence on primary and secondary education) show that the classroom use of computers 
remains modest. In particular, OFSTED (1998) reports that many teachers are not convinced that using 
technology produces sufficient benefits in terms of raising standards as they are presently defined.  

Computer use and classroom learning 

An early attempt to gauge the influence of classroom computer use on pupil achievement was the ImpacT 
study (Watson, Cox & Johnson, 1993). Matched classes, chosen as making high or low use of IT, were 
followed over two academic years. Case studies indicated that effective use of IT was supported where 
teachers understood the rationale of software and were willing to experiment with it; and where they took 
a process view of the subject and accepted collaborative working by children. In mathematics, the high-
IT-using classes all reported using topic-specific courseware presenting problems for practice and/or 
investigation. Some also made use of more generic tools such as databases, spreadsheets, drawing and 
graphing packages, and Logo. On tests of mathematical reasoning, administered in the middle of the first 
year of the study, and towards the close of the second year, statistically significant differences favouring 
children in high-IT-using classes were found at KS2 and KS4, but not KS3; the median effect size was 
0.3. However, these pupils did not make greater gains over the lengthy period between test 
administrations. Nor was the study designed to allow causal implications to be drawn with confidence.  

Another study focused on the contribution that computer microworlds might make to the development of 
numeracy (Noss & Hoyles, 1996). While focusing on secondary schools, the findings are also relevant to 
the primary sector. A Logo programming environment was extended to provide new procedures, 
designed to support tasks concerned with scaling ‘drawings’ up and down in size, with the intention of 
focusing pupils’ attention on issues of ratio and proportion. The associated curriculum unit was 
implemented with a class of KS3 pupils, already experienced with Logo, for one-and-a-half hours per 
week over a period of 6 weeks. The task strategies and learning trajectories of pupils were documented 
and analysed, providing information to guide future use of the unit. Pupils made significant gains in 
performance on written ratio tasks between pre- and post-test, sustained at deferred post-test; this 
contrasted with the stable performance of a comparison group. An important feature of this intervention 
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was the pedagogical concern to structure learning effectively, anticipating ways in which important lines 
of enquiry and reasoning could be stimulated and supported through pupils’ interaction with the 
microworld (Hoyles & Noss, 1992). 

More recently, reviews commissioned by the Numeracy Task Force (Reynolds & Muijs, undated) and the 
Teacher Training Agency (Moseley, Higgins et al., 1999) have led to the suggestion that ‘there is little 
hard evidence for any beneficial effects of ICT on numeracy in the primary age range’ (Higgins & Muijs, 
1999). In ensuing research, four out of five classroom interventions aimed at promoting effective use of 
technology in the teaching of numeracy produced significant short-term gains on standardised tests; 
although the researchers caution that such gain scores may lack validity, and should not be interpreted as 
simple effects of ICT use. The researchers report that teachers who favoured ICT were likely to have 
well-developed ICT skills and to value collaborative working, enquiry and decision making by pupils; 
whereas teachers who had reservations about using ICT were likely either to exercise a high degree of 
direction or to prefer pupils to work individually (Moseley et al. 1999).  

Integrated learning systems 

A substantial programme of research has examined the contribution made by integrated learning systems 
(ILS) to the development of numeracy (Underwood & Brown, 1997; BECTa, 1998). In the early phases 
of the research, the basic numeracy skills of groups of children whose curriculum incorporated use of ILS 
were compared with controls. In the first phase, extending over 6 months, a statistically significant effect 
size of 0.4 favoured the ILS group; in the second phase, lasting around 3 months, the statistically 
significant effect size of 0.1 was in the same direction. In the third phase, extending over a year, broader 
achievement measures were used, assessing broader numerate reasoning. A study at KS2 and KS3, using 
NFER test scores, found statistically significant, but small, effects (in opposite directions). One study of 
KS3 national test levels and KS4 GCSE grades found statistically significant, but small effects (which 
were consistently negative); another found no statistically significant effects. In all three studies, there 
was marked deviation from these general trends: according to type of ILS at KS2; and according to 
school at KS3 and KS4. The final programme report concludes that ILS have shown effectiveness in 
developing basic skills, but not in developing the numerate reasoning tested in public examinations. 
Similarly, the report concludes that ILS have shown positive effects on children’s behaviour, motivation 
and attitudes towards the use of computers for learning, but that effects on more general attitudes to 
schooling and school work are neutral. 

The integration of technology in pedagogy 

This last example illustrates the contribution that can be made by an extended programme of research, 
conducted in some depth, from alternative perspectives, and using varied methods. No other aspect of 
ICT and numeracy has been researched so extensively. Yet, the variation found between schools and 
classes suggests that research now needs to move into the classroom, to explore the integration of 
technology with pedagogy. Other studies reviewed here have indicated related avenues meriting further 
investigation. Perhaps most striking is the recurring suggestion that effective use of ICT to develop 
broader numerate reasoning is associated with pedagogical approaches in which tasks are more open 
ended, activity more collaborative, and teacher support less directive. 

The mechanisms behind such associations remain poorly understood. Reviewing a cross-European–but 
substantially British–group of case studies, Clausen (1992) notes how changes in pedagogical styles and 
classroom cultures ‘seem somehow to have been precipitated by the introduction of computer-based 
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activities’. Nevertheless, as she suggests, rather than there being a simple direct relationship, the 
pedagogical affordances of technology are mediated by the ways in which teachers and students not only 
assimilate its use to their already established perspectives and purposes, but accommodate perturbations 
arising during the course of its use. This issue of the integration of technology use into a larger 
pedagogical system, then, emerges as a most important one for future research.  

Equally, educational perspectives and purposes –not just of teachers and students, but of parents and 
policy makers- emerge as significant factors shaping the implications for policy and practice which might 
be drawn from the body of work reviewed here. In the terms of the perspectives and purposes which 
predominate in current public discussion of numeracy policy and practice, one would be bound to draw 
largely neutral conclusions. Viewed from an alternative perspective, the situation can be expressed rather 
succinctly: present uses of technology do not greatly enhance a schooled numeracy which continues to 
prize independence from technology; and this culture acts as a critical barrier to the development of 
forms of technology integration within schools which mirror those emerging in the workplace. 
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BRITISH RESEARCH ON TEACHING AND 
LEARNING NUMERACY IN THE EARLY YEARS 

Penny Munn, University of Strathclyde 

Introduction 

What is the maths that is learned in the early years? Our notions of what is relevant to maths learning in 
the early years will determine the research that we regard as relevant to the review. In this review, 
research on the development of two key number abilities–counting and symbol use–will be included on 
pragmatic and conceptual grounds. The pragmatic grounds are that these are both abilities that the later 
primary curriculum expects. The conceptual grounds are that recent research has underlined the early (i.e. 
preschool) development and the potential importance of these abilities. Children’s experiences before and 
out of school, early individual differences in ability, the nature of maths teaching in the early years and 
the early years maths programmes that are currently in use in Britain are all relevant areas that will also 
be covered. For the purposes of this review ‘early years’ will be defined as the period from 0 to 6 years 
because of the informal learning strategies that are most useful during this phase of development. 

Communication in the early years  

Effective mathematical communication between adults and young children requires that adults take 
account of differences between their own understanding and that of the children’s. In mathematics 
teaching generally, communication of reasoning can be problematic, and often relies on analogy or 
metaphor. Nunes, Light and Mason (1993) found that children’s progress in measurement involved 
progressive inter-subjectivity in their communication with each other. Focusing on the language of the 
classroom, Solomon (1998) found even in the first year of schooling a teacher-led mathematical 
discourse that children had to make an effort to access.  

There is some research concerning what primary teachers actually do in the classroom. Hughes, 
Desforges and Mitchell (2000) found that teachers are very competent at developing their own strategies 
for helping children to apply mathematics. Askew et al. (1997) found that effective teachers made 
explicit connections between different operations. Children come to school with varying levels of 
understanding and different strategies– effective teachers intervene with the children’s strategies without 
replacing them entirely.  

Even given the above, there is very little research into classroom interactions around early maths for 
obvious reasons (such research requires a high level of resourcing relative to output). However, even the 
limited amount of research that there is directs us to the conclusion that appropriate language and 
metaphor are both necessary and sufficient to help young children develop primitive concepts into 
conventional mathematical thought. Such analyses of mathematical communication reinforce traditional 
Early Years views on the style of communication between adult and child that is appropriate to Early 
Years teaching and the role of pretence in such communication (Isaacs, 1930; Pound, 1999). 

In addition to the Early Years maths curriculum there are well-designed curricular programmes based on 
recent research into children’s abilities and ways of learning. 
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The National Numeracy Strategy  is based on idea that much teaching is oral and interactive. It gives 
teachers a range of strategies and a ‘template’ for teaching different strands of numeracy on a daily basis 
with the whole class. It emphasises mental calculation in the early years, with no early emphasis on 
written calculations. The Strategy  is loosely based on current research and theory but does not make 
explicit links with the research literature. 

There are also programmes that are aimed specifically at low-achieving children. For example, ‘Paired 
Numeracy’ (Topping and Bamford 1998) is an approach that is derived from similar approaches in 
reading and science that are designed to help low-attaining or failing children. It is based on current 
research into the effective contexts of learning. The system uses maths games in paired (co-operative) 
learning and peer-tutoring.  

Young children’s abilities 

Children’s ability to benefit from the school maths curriculum is influenced by their experience of maths 
and number in the years before they go to school. Even young babies are surrounded by a discourse of 
numbers and it is thought that the earliest individual differences in number ability are related to 
interactive experiences around number. Children’s early experiences of maths are much more discursive 
if they attend a nursery school managed by a teacher. Their home experiences are also influenced by 
parents’ familiarity with mathematical discourse. Active intervention can support parents in helping 
children at home– a negative school attitude to parents can get in the way of developing an ethos that is 
truly supportive . The research on experience out of school shows that families are an important source of 
variance in ability, but that it is not always easy to influence what happens within them.  

Aubrey (1997) has investigated what children know about number on entry to school. She found that 
number knowledge was related to rote counting ability; children who performed well on rote counting 
were well on the way to level 1 of the National Curriculum. Children from low socio-economic-status 
families had lower scores but did make better progress. The children’s abilities were often at a higher 
level than the demands of the National Curriculum. Her conclusion was that children’s rich experience of 
number was often ignored at school entry.  

Researchers in other countries have come to the same conclusion about the relation between children’s 
pre-existing knowledge and the school curriculum, for example Irwin (1996) and Young-Loveridge 
(1989) in New Zealand and Wright (1994) in Australia (who claims that ignoring individual differences 
at school entry may result in maths failure at later stages). 

Advances in theoretical work on early maths (e.g. Gelman and Gallistel, 1978; Fuson, 1988) have re-
instated the role of counting in the early years maths curriculum. Mathematical understanding is no 
longer seen as developing from an understanding of sorting and matching, and it is now understood that 
the social functions of counting play quite a large role in the initial acquisition of a ‘number string’. This 
early rote counting, which used to be discounted as lacking logic, is what Aubrey (1997) found to 
correlate with number knowledge on school entry. While such counting has no causal connection with 
later number logic (such as the ability to add and subtract) it does play an important role in allowing 
children initial entry to the discourse of number.  

A number of British researchers have worked out the detailed implications for the primary curriculum of 
the renewed importance of counting. Thompson (1997a) has produced a classification of number 
strategies and their relation to counting. (counting up and down, doubling, bridging up and down, step 
counting, regrouping). He shows how number knowledge is based on a network of strategies that include 
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both counting and conceptual advances on counting. Those children who don’t move on from counting 
are disadvantaged and require intervention. Such ideas form the basis of early years mental maths.  

Gray (1997) points out that counting has a positive role early in development, but needs to be replaced 
quite rapidly by more sophisticated cognitive concepts. Children need to recognize symbolic ambiguity 
(i.e. number as counting process or as a thing). A gradual compression of counting allows children to use 
numbers symbolically (e.g. count-on strategy). Cowan & Ioakimidou (1999) found several preschool 
children who expected addition to be commutative even though they were unable to add and uncertain 
about the importance of order in verbal counting. This suggests that understanding of commutativity is 
not based on addition skill or on reflection on counting.  

The Early Years maths curriculum 

These findings all have relevance for the teaching strategies based on counting and mental number that 
are now thought appropriate in the early years. Early counting is more important than previously thought, 
but it is important to make sure that children move on from counting strategies as soon as they are able. It 
is also important to make sure that mathematical discussion is not limited by the children’s apparent lack 
of understanding of number logic, since such discussion is the main source of their learning.  

The findings on counting have considerable relevance for the role that written numerals play in the early 
years curriculum. Thompson (1997b) has pointed out that place value is a concept relevant only to 
written numerals, that it is not required for mental facility with numbers, and is logically not required in 
the initial curriculum if early years teaching concentrates on mental maths ability. Hughes (1986) showed 
that learning of number symbols is often procedural rather than conceptual ñ even in high ability 
children. Munn (1995) showed that early use of number symbols in problem solving was closely related 
to the development of number concepts. Tolchinsky Landsmann and Karmillof-Smith (1999) claim that 
young children distinguish different domains of symbol knowledge (writing, numbers, drawing) before 
they can accurately produce domain-relevant symbols, but that this distinction is not apparent in their use 
of notation as a communicative tool. Dockrell & Teubal (in press) claim that it is only when children 
learn the unique referential function of particular symbols that children can manipulate them or use them 
in problem solving. There is a considerable gap in our knowledge of just how young children develop the 
ability to use number symbols in problem solving and this is a growing research field.  

Implications 

In recent years there has been a revolution in our understanding of early maths learning, based on a 
revised assessment of the role of counting. This has by and large been reflected in changes in early maths 
curricula around the world. It is apparent that the small amount of research on teacher practice does not 
yet match the volume of research into children’s understanding of number. There is a pressing need for 
further research into classroom discourse processes in the early years and for the results of this research 
to be related directly to maths teaching in the early years. There are a number of systems in use in Britain 
for teaching, supporting and remediating maths in the early years that are based in some way on current 
research. We need to link current research into early years maths more closely to classroom practices and 
to particular programmes. There is a particular need for more research into the development of children’s 
use and understanding of written numerals. 
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BRITISH RESEARCH INTO SCHOOL NUMERACY 
IN RELATION TO HOME CULTURES 

Guida de Abreu, University of Luton 

 

Introduction 

This paper is a review of research into the understanding of the impact of children's home cultures on 
their achievement in school mathematics. In the international context, interest in this area derives from a 
recognition of the socio-cultural nature of mathematical practices. Initial empirical support for this view 
emerged from the analysis of the mathematical practices of social and cultural groups with limited or no 
participation in Western schooling. Examples of this research can be found in the fields of 
ethnomathematics (Ascher & Ascher, 1980, Bishop, 1988a, Bishop, 1988b, D'Ambrosio, 1985), 
anthropology (Lave, 1988) and developmental psychology (Gay & Cole, 1967, Nunes et al., 1993, Saxe, 
1991). 

In the 1980's reports on the mathematical achievements of populations living in highly schooled societies 
started to cause some disquiet. In Britain, the Cockcroft report (1982) stressed discrepancies of 
performance between distinct social groups (e.g. boys and girls) and between social practices (e.g. school 
and work). This led researchers to argue that a socio-cultural approach to mathematics learning was 
necessary in order to address issues related to participation in multiple social practices within a society. 
Examples of such research in Britain include (Harris, 1991, Hoyles et al., in press, Noss, 1997, Noss et 
al., 1999, Solomon, 1989, Walkerdine, 1988). 

Research adopting a social-practice approach to children's home-school mathematical learning in Britain 
is still in its early stages (Abreu & Cline, 1998, Baker et al., 2000). Nevertheless, findings from other 
countries such as Brazil, Portugal (Abreu, 1995, Abreu et al., 1997) and the USA (Brenner, 1998, Civil, 
1998, Civil & Andrade, in press, Masinglia et al., 1996) and also from studies on home-school literacy 
practices (Tizard & Hughes, 1984) suggest that it is an approach worth following. Below I attempt to 
address two questions: (1) What type of evidence supports the notion that there is a relationship between 
the home cultures and school numeracy? (2) What are the mediators in the relationship between the home 
cultures and achievement in school numeracy? The National Numeracy Strategy emphasises the raising 
of standards for all groups and suggests that engagement of parents and communities play a part in this 
process. In view of this the research basis to answer the above questions need to be clarified (Brown et 
al., 1998, DfEE, 1998).  

Home cultures and attainment in school numeracy  

In Britain support for the notion of a link between home cultures and school numeracy can be found in 
quantitative and qualitative analyses of the relationships between school achievement and students' social 
class and ethnic group membership. The relative achievement of students from different ethnic groups 
has been the subject of "The Committee of Inquiry into the Education of Children from Ethnic Minority 
Groups" (Swan, 1985). Gillborn and Gipps (1996) followed this report a decade later with an Office for 
Standards in Education (Ofsted) commissioned review of the school experiences of ethnic minorities. 
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They found some positive changes, such as, the "improving levels of attainment among ethnic groups in 
many areas of the country". They also raised concerns about issues, such as that of the growing gap 
"between the highest and lowest achieving ethnic groups in many LEAs" and the fact that "even when 
differences in qualifications, social class and gender are taken into account, ethnic groups do not enjoy 
equal chances of success in their applications to enter university" (p. 78). A recent Ofsted report (1999) 
confirms that the attainment of minority ethnic groups as a whole is improving, but some groups are 
continuing to underachieve. 

Although these data provide a rough indication of some type of relationship between home group 
membership and school achievement, it is difficult to obtain a clear picture. Difficulties emerge from the: 

• Categories used to attribute home-group membership - There are variations both between researchers 
themselves and between schools in the classification of ethnic minority groups. For instance, Gillborn 
and Gipps use ethnic minority "as a general label for all people who would not define themselves as 
'white' in terms of their ethnic identity" (1996, p.8). This means that for instance their analysis left out 
any consideration of issues of relative performance among children of non-English white European 
background. Difficulties regarding the definition of social-class are also reported in the literature (e.g. 
Cooper & Dunne, 1998). 

• Data held by the schools - Although government emphasis on National Testing and on the publication 
of school results has already generated some harmony on the data made available by schools, this is 
not yet the case in ethnic groupings. The 1999 Ofsted report on ethnic minority pupils mentioned that 
"There was considerable variation in the form and extent of the data held by the schools on the 
attainment of pupils from different ethnic groups. Some groups had no data available, in others the 
ethnic categories were crude (e.g. Asian), while others failed to analyse the performance of boys and 
girls separately." (Paragraph 26).  

Some of the reports do not give a detailed analysis subject by subject. Since, however, mathematics is a 
core subject in the national curriculum, one can infer that the general trends in the groups also apply to 
mathematics. Information from Local Education Authorities in some multicultural areas confirms that the 
trend does indeed apply to mathematics (Luton Education Authority, 1998; Lambeth Education 
Authority, 1999-2000; Rasekoala, 1997). Research in the USA confirms similar trends as those found in 
Britain, i.e., it shows that the gaps between some ethnic groups have been closing in recent years, but 
also that the attainment of some ethnic groups remains a matter of concern (Secada, 1992; Tate, 1997). In 
addition, this research suggests that ethnic differences still persist even when variables such as social 
class are kept constant (Tate, 1997).  

Data from studies such as the above offer some indication of which groups are likely to be more or less 
successful in their learning of school mathematics. Yet, it does not clarify the precise reasons why they 
perform differently. The complexity in this research is increased by observations that group membership 
in isolation cannot be taken as a predictor of school performance. Social-practice theory attempts to 
explore these differences through in-depth analysis of social and cultural mediation.  

Mediators between home cultures and school 

Recent studies in Britain on how the home cultures mediate the children's performance in school 
numeracy have considered between-group and within-group differences. Between-group differences have 
been explored in two particular types of studies. One type has as its starting point what children actually 
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do in school numeracy tests. The other type has as its starting point ethnographic analysis of school and 
home numeracy practices.  

Investigations on how performance in national numeracy tests can be affected by children's social class 
background have been conducted by Cooper (Cooper, 1994, Cooper, 1998, Cooper & Dunne, 1998). 
Theoretically they are based on the established European sociological theories of Bernstein and 
Bourdieu. Through a combination of quantitative and qualitative methods Cooper and his colleagues 
have shown that "working and intermediate class children seem to be more predisposed than service class 
children, at age 11, to employ initially their everyday knowledge in answering mathematics test items and 
that this can lead to under-estimation of their actual capacities with respect to the demands of the school 
discipline of mathematics as it is currently defined". Interview data shows that the children’s difficulties 
arose from confusion about what knowledge was required in a specific context. For instance, in a “tennis 
item” children needed to understand that knowledge that was appropriate in a sports context was not 
appropriate (or legitimate) for solving a school mathematical test.  

A difficulty with this research is that it does not describe the particular classroom practices to which the 
children were exposed. Therefore, it is unclear whether what children perceive as legitimate knowledge 
can be changed. For example, if classroom practices provide opportunities to externalise and negotiate 
conflicts, will this help the children re-define boundaries when applying knowledge in different contexts? 
Further research exploring relationships between children's socio-cultural backgrounds, classroom 
practices and their performance is necessary. 

Research which is based upon an ethnographic account of school and home numeracies draws on cultural 
approaches to mathematics learning which have emerged from the cross-fertilisation of ideas from 
anthropology, psychology and ethnomathematics. Detailed analysis of organisation of practices is used to 
highlight potential areas of conflict between the child's experiences at home and at school (Jones, 1998). 
Between-group variations are often conceptualised as sources of "cultural conflicts", which, as Jones has 
pointed out can arise from differences in the ways parents and teachers: (1) view the parents' role in the 
education process; (2) define what is considered to be adequate behaviour for children; (3) structure the 
numeracy practices for the children.  

In my own work I have been trying to expand this type of research to explore within-group variation. My 
starting point is that within any group there are always some children who do better than others. Taking 
this into consideration I have been using a research methodology where children from the same home 
group, but with different levels of school performance in mathematics are selected as case studies. The 
method was initially developed in Brazil and Portugal (Abreu, 1995, Abreu et al., 1997), and recently in 
collaboration with British colleagues was used to investigate home-school numeracies in multiethnic 
primary schools in Britain (Abreu & Cline, 1998, Abreu et al., in press). Following Vygotsky the 
learning and uses of mathematics were explored in terms of the mediating role of mathematical tools 
available in each practice (Nunes & Bryant, 1996). It also drew on European social representations and 
social identity theories (Abreu, 1999). This enabled us to explore the impact on uses, transmission and 
learning, of the way groups and individuals valorise their practices. Our research in Britain strongly 
indicated that the way families structure home practices to support their children's mathematical learning 
was linked not only to their own cultural heritage, but to their representations of what was "worthy" to be 
transmitted to the child. The basis of these representations can be a problem in a context where several 
parents reported difficulty in getting direct access to the child's school numeracy practices (this was 
greater in the case of ethnic minority parents).  
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Implications 

To sum up, research in Britain into the social practices of home numeracies and how these relate to the 
child's transition to school numeracies is still recent but gaining in importance. The preliminary results 
are however encouraging and seem to be of extreme relevance for educational practice and policy. 
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BRITISH RESEARCH INTO PEDAGOGY 
Mike Askew, King’s College, London 

 

Introduction 

Reviewing the research into pedagogy has to start with a definition of the term: a far from 
straightforward task. Some writers work with a model of pedagogy that examines teaching in broad 
terms: - grouping, layout of room, use of resources, such as the board - (Good & Brophy, 1997). Such a 
view would be close to what McEwan (1989), discussing the work of Komisar (1968) describes as the 
'enterprise' level of teaching. In contrast to this McEwan suggests that teaching at the level of 'acts' also 
needs to be examined, teaching 'acts' referring to the process of actually teaching something to someone 
at the level of detail. As such, acts would seem to be what some researchers refer to as didactics, while 
others would include them within the general heading of pedagogy. 

This broadening of the meaning of pedagogy to include some elements of didactics can be traced in the 
development of research in this area. Studies from the 1970s and 80s tend to concentrate on pedagogy at 
the enterprise level while more recent research has turned to examining the teaching of particular subject 
areas and even particular topics within those areas. This review therefore broadly follows this 
development from the view of pedagogy as 'enterprise' to the more particular in terms of mathematics as 
a discipline. However, the teaching of particular aspects of numeracy, for example written methods of 
calculation, are dealt with elsewhere in this review. 

Teaching styles: Large scale studies 

Alexander (1999a) suggests that pedagogy as a major focus for educational research is a relatively late 
development. In England there were a set of generic large scale, quantitatively oriented, studies of 
primary practice influenced by the 'traditional' versus 'progressive' debate. Both Bennett (Aitken, Bennett, 
& Hesketh, 1981; Bennett, 1976) and the ORACLE (Observational Research and Classroom Learning 
Evaluation) study (Galton & Simon, 1980; Galton, Simon, & Croll, 1980) attempted to cluster teachers 
into distinct teaching styles and to relate these to measured attainment in mathematics (and language). 
Mortimore et al (1988) were more concerned with the effects on performance of school management and 
classroom management policies.  

The findings of these studies generally suggested that distinct teaching style clusters could not be easily 
identified. There was little co-operative work between children, with considerable individualised work 
despite the children being seated in groups. Integrated day and totally individualised working seemed less 
effective forms of organisation than those in which there were at most two different  activities happening 
simultaneously in classrooms. The findings about whole class teaching were ambivalent; it  appeared that 
questioning at a high cognitive level was the key factor and although there was some tendency for this to 
be more often combined with higher proportions of whole class teaching this was by no means always 
the case. Following up the ORACLE study twenty years on, Galton et al (1990) note that the attention 
paid to examining organisational strategies diverted attention from important differences in 'tactics' used 
by teachers within, rather than across, differing organisational styles. 
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Ethnographic studies 

The large scale studies provided statistical accounts of representative classrooms and pedagogy. In 
contrast, small scale qualitative studies (for example Pollard, 1985; Pollard with Filer, 1995; Woods, 
1990) provided insights into strategies used by teachers and children to 'juggle with their interests-at-
hand in the ebb and flow of classroom life (Pollard op cit. p. 179) and in their attention to issues of power 
and control in the classroom are closer to looking at the 'acts' of teaching. However, they shed little light 
on the didactics of teaching mathematics per se. 

The impact of the National Curriculum 

The introduction of the National Curriculum marked a revival in large scale studies examining the effects 
of its implementation on teachers' practices. The PACE project (Primary Assessment, Curriculum and 
Experience) studied the implementation of the National Curriculum in Key Stages 1 and 2 (KS1, KS2), 
from the late 1980s to the mid 1990s and employed a mix of the large scale quantitative and small scale 
qualitative, studies, embedding detailed studies of classrooms within a larger sample. In terms of 
examining pedagogy, the PACE project followed in the tradition of the early large scale projects in 
looking at pupil organisation. In KS1 the PACE researchers suggest that while the teachers in the study 
still espoused a commitment to pupils having some classroom autonomy, the introduction of the National 
Curriculum meant that they were increasingly having to direct pupils' activities (Pollard, Broadfoot, 
Croll, Osborn, & Abbott, 1994). Data on styles of classroom organisation suggested that teachers were 
employing a 'mix' of teaching methods (Alexander, 1992) with an increased proportion of teachers from 
1990 to 1992 indicating more use of 'traditional'  methods, including whole class teaching. 

In KS2 the PACE project noted that individual work increased as the pupils became older, with KS2 
teachers spending approximately 30 per cent of time in whole class interaction and just over 50 per cent 
of their time working with pupils individual (Croll, 1996). 

The introduction of the National Curriculum also encouraged more research attending to the teaching of 
particular disciplines. With respect to mathematics, the Evaluation of the National Curriculum for 
Mathematics (ENCM) project carried out at King's College, explored aspects of teachers' pedagogy in the 
light of the Orders for mathematics. Pertinent findings from the project included an examination of the 
extent to which teachers used commercial schemes and whether their teaching was 'scheme assisted' or 
'scheme driven' (Millett & Johnson, 1996). With the introduction of 'Using and Applying Mathematics' 
into the curriculum part of the ENCM also examined the impact of this on teachers' pedagogy. Askew 
(1996) suggests that for many of the teachers in the study the introduction of this aspect into the 
curriculum had not actually led to major changes in practice. Instead the teachers had interpreted the 
orders in ways that allowed them to maintain their existing practices. 

Linking practices and outcomes 

While such research into the impact of the National Curriculum provided some insights into teachers' 
practices, the research was not evaluative in the sense of examining pedagogy in terms of effects on 
pupils' learning. With the increased media attention to England's standing in international league tables, 
research into pedagogy is beginning to try and link practice with outcomes.  

However, little such research has been carried out in England and as Alexander (1999b) points out there 
is a heavy self referential character to much of this research. For example, work such as Creemers (1994) 
in Holland can be traced back to the work of Rosenshine  (1983; 1987). But embedded within 
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Rosenshine's work is that assumption that direct instruction is at the heart of effective teaching. 
Recommendations for pedagogy  are predicated on a behaviourist  model of the teaching and on 
particular assumptions about what is to be taught, focusing in particular on 'basic' skills and procedures.  

Such models of effective pedagogy of course appeal to policy makers because of the way in which they 
can be translated into lists of competencies and help develop a 'technology of teaching' (Reynolds, 1998). 
The Teacher Training Agency's (TTA) 'Effective Teachers of Numeracy Project'  appeared to be rooted 
in a 'technical rationalist' (Ball, 1998) view of teaching: with the assumption that the characteristics of  
effective teachers and their practices  could (a) be defined (b) be identified and (c) be reduced to a set of 
descriptive and prescriptive recommendations. This research examined pedagogy in terms of grouping 
and other aspects of classroom practice  against pupils gains on a test of numeracy. No clear associations 
were identified between pupils gains and such aspects of pedagogy, although there was an association 
between teachers' beliefs about how best to teach numeracy and pupil gains (Askew, Brown, Rhodes, 
Wiliam, & Johnson, 1997) 

Setting aside the issue of whether or not such competencies can be identified and, if so, are the 'right' 
ones there is the question of how, having dissected pedagogy into such components, it might be re-
constructed. While opportunity to learn, challenging questioning, formative feedback and so forth (for 
example Sammons et al (1995)) might be important factors, research has not demonstrated 'how these 
and other elements are reconstituted by teachers and children as coherent and successful learning 
encounters with a beginning, a middle and an end' ((Alexander, 1999b, p. 152). 

Cross cultural studies 

In an attempt to move from a parts to whole model Alexander (ibid.) develops a model of 'cross-cultural 
pedagogic continua' including, for example, teachers' questions on a continua from mainly closed to 
mainly open and views of knowledge informing lessons from codified, rule-bound and received to 
uncodified, negotiable and reflexive. On the basis of these continua Alexander provides examples of two 
paradigms of lessons,  drawing on a number of lessons which although contextually very different (being 
drawn from across five countries) and focused on different content, share a number of characteristics in 
terms of their placings on the continua.  

The first paradigm is very similar to the Rosenshine (1987) model but the second paradigm is very 
different. For example, Alexander's first paradigm is characterised, in part, by lessons being fragmented 
into small steps delivered at a brisk pace, while the second paradigm marks lessons as having little sense 
of pace with the shape and speed of the lesson emerging from events as they happen. Alexander argues 
that the two paradigms are extremes with many lessons combining elements from each and with 
considerable within country variation. Only in India and Russia was there strong consistency across 
lessons with both being located on the first, Rosenshine-like, paradigm. 

Whitburn (2000) in her comparison of English and Japanese early years mathematics classrooms  notes 
two major differences between English and Japanese societies with respect to children's learning. Firstly 
the difference in the perceptions of the relative effects of ability and effort, with perseverance highly 
regarded in Japan, and seen as more important than innate ability. Secondly the difference between the 
two countries in the balance of attention to the development of the individual as opposed to the group. 
Whitburn suggests that in Japan there is much more attention to working as a member of the group in 
ways that help everyone move forward and maximise the chance of group success. 
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Within such cultural norms it may be easier for Japanese teachers to work with pedagogic practices that 
focus upon detailed discussion of a small number of contextualised problems with a high level of peer 
evaluation of the problem solving approaches adopted. (Whitburn p. 257) (However such norms are less 
easy to reconcile with the high levels of individual practice of procedural applications also noted in 
Japan.) The initial intention of the National Numeracy Strategy would seem to be in line with one of 
Whitburn's recommendations - a reduction (removal in Whitburn's terms) of differentiated teaching 
(Department for Education and Employment (DfEE), 1999) 

In another comparative study, Broadfoot et al (1993) suggest that the concern of English teachers to meet 
the needs of individuals make them more concerned than French teachers to motivate children through 
making the work interesting. Again, factors outside the classroom appeared to be significant in 
accounting for pedagogical differences, particularly with, in France, the high societal value placed on 
intellectual endeavour and French pupils displaying a clear distinction between 'work' and 'play'. 

In the later QUEST (Quality in Educational Systems Trans-nationally) project  it was hypothesised that 
the more formal pedagogic style of French classrooms would lead to French pupils performing better on 
assessment tasks based around learned formulae and procedures, while English pupils would perform 
better on problem solving and creative tasks. The assessment results supported these hypotheses: pupils 
performed best on assessments that reflected their countries’ curriculum priorities (Broadfoot, 1999) 

Such within country differences, Alexander suggests, can be traced to macro influences. Alexander's' 
work challenges the notion that large scale international comparative studies allow one to 'cherry pick' 
from practices and we appear to be moving into an era of research where cross cultural studies are 
beginning to take into account these broader societal influences. 

Implications 

In summary, detailed comparative  studies suggest that differences in pedagogic practices are as much to 
do with macro influences as variation amongst individual teachers. In terms of implications for practice 
there is little specific to recommend. More English research needs to be carried out into mathematics 
pedagogy and practices and how these are influenced by both the culture of English schooling and 
teachers' beliefs. 
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Introduction 

Recent policy and prescription emanating from government bodies in relation to Initial Teacher Training 
(ITT) and primary mathematics teaching appears to be built upon a deficit model. Derived from 
interpretations of comparative international data it is sustained by a burgeoning national audit culture of 
league tables and targets to which the mathematical subject knowledge of ITT students will undoubtedly 
soon be added. This educational epidemiology monitoring the mathematical health of the nation has 
identified the quality of mathematics subject knowledge and understanding of students/primary teachers 
as a cause for concern. The prescription which, it is speculated, will guarantee a more competent and 
confident work force is: (a) specified and tested levels of mathematics subject knowledge for all trainees 
(DfEE, 1998 a); and, (b) specified mathematics content and pedagogy for all primary teachers (DfEE 
1998 b). Whilst there is some evidence to support such a government agenda there are reasons for 
questioning the sufficiency of the account and the evidence that informs it.  

The fragmentary nature of the evidence base 

The paucity and fragmentary nature of the evidence from British studies which claim a specific focus on 
mathematics makes it difficult to make definitive research claims regarding ITT. Even in America the 
evidence base is widely thought to be ‘piecemeal’ and ‘not systematic’ (Eisenhart et al., 1991; Brown et 
al., 1990). Reviewing the literature indicates that there is perhaps a case for challenging the privileging of 
empirical evidence over theoretically constructed arguments: anecdotal accounts, not informed by 
explanatory theoretical frameworks, are in part responsible for much of the incoherence found. Certainly 
much existing British research is small scale and descriptions of student teachers have presented 
unilateral accounts of the complex teaching equation. The fragility of the evidence base regarding the 
effectiveness of Continuing Professional Development (CPD) programmes, especially those relating 
specifically to mathematics, is even more acute. Research on the effects of INSET is reported to be 
‘meagre’ and lacking a ‘cumulative dimension’ (Halpin et al., 1990: 164). 

The place of subject knowledge 

The importance of subject knowledge is well documented and its lack is linked to less effective teaching 
(Wragg et al. 1989; Bennett & Turner Bisset, 1993; Simon & Brown, 1996; DES, 1983, 1988; Ofsted, 
1994, Rowland et al., 1999) and over reliance on commercial schemes (Millett & Johnson, 1996). 
Mathematics and English primary training courses have been judged to be amongst the most satisfactory 
(DES, 1991). Yet, the change in subject-matter/substantive/syntactical knowledge of mathematics of 
PGCE student teachers (n=59) during training was found to be not significant (Carre & Ernest, 1993). 
Indeed, they displayed the same misconceptions as children (Bennett et al., 1993; Ball, 1990). Askew et 
al. (1997 a: 65; n=90), however, found that ‘more’ was not necessarily ‘better’ when they correlated 
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teachers’ mathematical knowledge, measured in terms of qualifications, against pupil learning outcomes. 
Recent debate regarding teacher knowledge has been stimulated by the influential work of Shulman (e.g. 
1987) in the USA and concerns the need to address pedagogic content knowledge (PCK) in ITT rather 
than subject knowledge per se. Critics challenge the credibility of such a distinction (McNamara, 1991); 
and the underlying absolutist view of mathematics, and transmission view of teaching, that it presents 
(Meredith, 1995; Stones, 1992). Additionally, PCK is thought to be situationally and experientially 
grounded in, and constrained by, classroom experience; and related to knowledge, values and 
epistemological beliefs rather than ITT (Aubrey e.g. 1996; Meredith, 1993).  

The effects of testing 

Studies (Brown et al., 1999; Green & Ollerton, 1999) have identified students’ anxiety about maths as a 
major issue in ITT. Additional prominence given to mathematical knowledge audits (DfEE 1998a) and 
tests for trainees may, paradoxically, prove counterproductive and jeopardise the achievements of 
training courses in improving students’ attitude to mathematics (Brown et al., 1999). ITT has also been 
shown to be successful in increasing students’ confidence in their ability to teach mathematics and 
shifting their absolutist beliefs (Bennett et al., 1993; Carre & Ernest, 1993; Carter et al., 1993; Brown et 
al., 1999). The significance of beliefs and conceptions on practice is well documented: teachers’ 
dominant pedagogic beliefs are ‘not inconsistent’ with their dominant beliefs about the nature of 
mathematics (Andrews & Hatch, 1999); and, play a significant role in shaping teacher behaviours 
(Askew et al., 1997a; Lerman 1986, 1990; Ernest, 1989). Opinion is, however, divided as to how much 
ITT is able to substantively influence these beliefs. Primary B.Ed. students’ images of teaching from their 
own school days have been shown to be highly influential in moulding subsequent classroom practice 
(Calderhead & Robson, 1991; n=12) and have necessitated much ‘unlearning’ in terms of attitude 
problems and subject misconceptions (Ball, 1988, 1990). Humanistic (Cheng, 1990; n=109) and 
pedagogic (Brown et al., 1999) views of teaching and learning developed in college sessions have also 
been found to be tempered by realism after teaching practice experiences. Additionally, ITT itself was 
not identified by serving teachers, or associated pupil outcome data, as a significant influence on the 
teaching of numeracy (Askew et al., 1997a; n=33). Bramald et al. (1995; n=162), however, argue that 
despite the perceived/reported lack of influence  the effects of training courses were not constant and 
belief systems were not as resistant to change as some research suggested.  

Intensity and  prescription  

ITT policy requirements can render courses over-full and squeeze out key aspects of training and 
professional development. Carre & Ernest (1993) expressed concern that an increasingly school based 
training would cause the already insignificant improvement in PGCE students’ grasp of content, 
substantive and syntactic knowledge of mathematics to deteriorate further. Teachers perceived training to 
be too short and too rushed, and most did not consider it to be a significant feature of their professional 
development (Askew et al., 1997a). Yet ironically, in the European context, past British Governments 
have been on their own in attempting to erode both the length, and the university based academic rigour, 
of ITT (Holyoake, 1993). Identifying the more disposable components of training courses opinion 
suggests that ‘reflection’, universally popular in the 80’s, 90’s (MOTE, 1992), is a vehicle more 
appropriate for experienced teachers (McNally et al., 1994, 1997). ITT, it was felt, should prioritise 
preparation for the induction phase (McIntyre, 1993). There is little empirical evidence to suggest that the 
use of reflection in ITT is effective in connecting pedagogic theory with practice and, additionally, it was 
felt to be at odds with a competence based model of training. Critiques carry many health warnings 
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(McIntyre 1993; McNamara, 1990; Smith, 1991; Leat, 1995; Higgins & Leat, 1997; Tickle, 1994). 
Research suggests that reflective work, insofar as it exists  can provide a forum in which students seek to 
reconstruct their own identity as they become inducted into professional discourses (e.g. Hanley & 
Brown, 1996, 1999; Tann, 1993; Jones et al., 2000). 

Effectiveness of school/teacher led CPD 

Mathematics Counts (DES, 1982) and HMI Reports (DES, 1978, 1979) generated considerable support 
for school-based professional development in the early 80s (Biggs, 1983; Pinner & Shuard, 1985; Pirie, 
1987). This included links to the Mathematical Association Diploma in Mathematical Education 
(Melrose, 1982); projects such as LAMP (DES, 1987) and RAMP (Ahmed & Williams, 1991); and, 
10/20 day courses (NFER). The use of advisory teachers (Straker, 1988; Biott, 1991) and mentoring of 
students and NQTs were identified as boosting the quality of the professional practice of the 
advisor/mentor as well as mentee (Vonk, 1993; Boydell, 1994; Elliott & Calderhead, 1993; Jaworski & 
Watson, 1994). Halpin (1990: 164), however, identified a lack of ‘empirically or theoretically 
generalisable’ evidence of the effectiveness of INSET. British studies focused specifically on the 
effectiveness of mathematics CPD, as regards pupil outcome data, are difficult to locate. Askew et al. 
(1997a, 1997b) identified extended mathematics programmes such as 10 and 20-day courses as the most 
effective way of changing beliefs and practices so as to significantly improve effectiveness in teaching 
numeracy. In reality, however, primary schools still retain an individualistic notion of development and 
short courses still predominate by virtue of time/cost constraints and perceived needs (Bottery & Wright, 
1996).  

Implications 

Current government policies aimed at raising standards in primary schools have been experienced by 
many primary teachers in terms of initiative overload. Such policies can be seen as part of a perpetual 
readjustment in teaching styles, related to the evolution of learning theories and policy fashions (Brown, 
1997). The implementation of the National Numeracy Strategy, together with its associated cascade-
training programme, has been an unprecedented move towards a prescribed PCK and CPD for primary 
teachers. Initial indications are, however, that NNS has been well received with positive impacts reported 
upon teacher and pupil attitudes, and practices/outcomes respectively (Ofsted, 1998; McNamara et al., 
2000). In the longer term, however, embedding policy has not always been understood in the terms in 
which it was presented (e.g. Millett, 1996), nor has it always been fully implemented before the next 
policy came along. 
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